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1. INTRODUCTION

Suppose it is desired to approximate in the Chebyshev or L", norm an
arbitrary continuous function/(x) over ex .;;; X .;;; {3 by a spline function A(x) of
degree n with m - 1 interior joints or knots Ub ... , Urn-I> where

IX = Uo < Ul ••• < Urn-l < Um = {3.

The approximating function A(x), then, where

A(x) E Cn- 1 (1)

is required to be a polynomial of degree not exceeding n within any interval
Uk-I';;; x.;;; Uk' k = 1, 2, .. 0' m. One representation for A(x), displaying its
linear dependence on n + m parameters di and Ck' is

where

m-l

A(x) = it dixi +2: :~(x-Uk)+n,
k~l

(2)

(3){
o X<O

(xhP
= xP x;;,O.

The quantity Ck gives the discontinuity in the nth derivative of A(x) at the kth
joint Uk'

Various generalizations are of interest. If two joints of A(x) are allowed to
coalesce, then a point at which

dn- 2 A-- == A(n-2)(x)
dxn-2

is discontinuous can arise. If the joints are to be regarded as free parameters,
then it is necessary to close the set of admissible approximations A(x) by
adding such limits in order to guarantee the existence of best approximations.
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On the other hand, one may be interested in a lower degree ofcontinuity from
the start. If (1) is replaced by A(x) E Cr , then Eq. (2) is replaced by

n-r-I rn-I

A(x) = i~ dixi + 6 6(nc,::~)!(X-us:_-s. (4)

Another type of generalization is made by Schumaker (1967, 1968), who
replaces polynomials by extended complete Chebyshev systems.

In any ofthese cases A(x) has a representation of the form
v

A(x;a,n) = Z; a/P/x;n) (5)
j~1

where, for example, for Eq. (2), v = n +m. If the joints n are regarded as given,
we have a linear approximation problem where, however, the functions !Pi do
not form a Chebyshev system. If the joints are included among the parameters
to be optimized, the approximation problem is nonlinear.

Schumaker (1968) has given a computational method for the fixed-joint
problem based on an exchange process ofthe Remez variety. Such an approach,
which assumes an error curve of"normal" form with v + 1alternating extrema,
suffers a disadvantage because ofthe non-Chebyshev nature ofthe approximat
ing function; for some f(x) the best approximations have fewer than v + 1
alternating extrema. Perhaps a greater nuisance in practice is that, when the
joints are near their optimal locations, additional error oscillations appear.

Barrodale and Young (1967) and the authors (1967) have used a linear pro
gramming approach which, though closely related to exchange processes of
the Remez variety, is not based explicitly on any characterization process, and
thus avoids the above difficulties. The linear programming formulation is
described in Section 2; it furnishes a basic subroutine used in computational
attacks on the variable-joint problem discussed in Section 3.

Rice (1967) has given a full characterization theory for best spline approxima
tion in the fixed-joint case. Schumaker (1967a, b) has independently treated this
problem and also the free-joint problem where the joints are parameters to be
optimized. Schumaker's characterization results for the free-joint case furnish
a theoretical basis for the computational algorithms discussed in Section 3.

Powell (1966) has discussed the corresponding L 2 approximation problem.
Also noteworthy is Lawson's treatment of piecewise approximation without
continuity constraints at the joints [(1963), (1964)].

2. A COMPUTATIONAL METHOD FOR THE FIXED-JOINT CASE

Given the joints n = (UI>"" Urn-I), an arbitrary continuous function f(x),
and the norm

11!P(x)11 = max 1!P(x) I,
",';'x,;,fJ

(6)
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we want to find that member of the admissible class of functions (5) which
minimizes the error norm II!- All; that is, we want a method to compute a*,
where for any a

11!(x) - A(x; a*, u)11 ~ li!(x) - A(x; a,u)ii.

As a first step, we agree to look only at a finite set of points Y = (g\> 6,
... ,gN)' where Nmight be, for example, 1000; that is, we replace the norm (6)
by the finite point set norm

11<P(x)liy == max 1<P(x)l.
XE¥

The "discretization error" thereby introduced can be studied by the approaches
of Rivlin and Cheney (1966), Rice (1964), or Shisha (1966); it is easy thereby
to obtain a posteriori estimates of this error in terms of moduli of continuity
of!(x) and the computed A(x). Alternatively (and always to be recommended
in careful numerical work), an effective computational procedure is to solve
one or more test problems on successively finer meshes and observe the con
vergence of the results. As a matter of computational experience, when the
error curve is smooth, the discretization error will ordinarily be unimportant
if there are at least half a dozen points in each loop of the error curve. If a
variable mesh is used it should of course be finer in regions where the error
curve is changing more rapidly.

The discretized problem can now be formulated as a linear programming
problem:

Minimize A

subject to the 2N inequalities

A-[!(gi)- ~j aj<Pigi)] >01._
r(1- 1,2 ..., N).

A+ [!(gi) - ~j aj<Pigi )] > 0 J

(8)

The resulting A* will be the minimax error magnitude. Prefixing Ato the vector
of coefficients a, we redefine

a = (A, a\> a2, ..., av)
and define

c = (f(gj), - !(gj),j(g2), - !(g2), .. .,j(gN)' - !CgN»),

r
<Pj(~I) -<Pj~gl) <Pj(~2) ~<Pj~g2) <P:(gN) -~j(gN)l

B = <P2~gl) -<Pigj) <Pig2) -<P2Cg2) <P2(gN) -<p~(eN) ,

<PvCgj) -<Pv(gj) <Pv(6) -<PvCg2) <PvCgN) -<Pv(gN)
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( UI "1

( 1 VI I

l<> J I~N
L vN

(9)

(10)

)
Then the linear program (8) can be written in the standard form:

Minimize ab
subject to aB;;;" c

(a not sign-restricted)

where the inequality applies to every component of aB and c.
Because of the (usually) large number 2N of inequality constraints aB;;;" c

in (9), it is much more efficient to solve the problem in the dual form:

Maximize cw )
subject to Bw = b

w;;;"O

[see, for example, Hadley (1962) for a discussion of duality theory in linear
programming]. In the final optimal basic solution of (l0), at most II + I of the
2N components of ware nonzero, and these correspond to points at which
the weak inequalities in (7) are equalities, i.e., to extremal error points, with
one sign associated with the Ui and the other with the Vi'

The labor involved in solving the linear program (10) by the revised simplex
method may be taken as roughly proportional to the number ofpivots (though
of course a certain amount of labor is required to obtain an initial basic
feasible solution). The number of pivots required depends strongly on the
number of unknowns II + 1, but only very weakly on the number of points
N (increasing N from 100 to 1000 typically increases the number of pivots
required by one or two). Thus, quite large problems can be solved very
efficiently by this process.

The authors believe that linear programming is the method of choice in this
problem. The usual expositions of the exchange process for determining best
approximations on discrete point sets make a strong assumption about the
linear independence of the functions ([>i(X), namely that every 11- by -JI

submatrix of the matrix

f
([>1 (fl) ([>1 (fz)
([>z(fl) ([>z(fz)

· .· .· .
([>vCfl) ([>v(f2)

([>1 (fN)l
([>2(fN)

([>v(fN)
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is nonzero-an assumption clearly not satisfied in the spline function case"
Ifone attempts to remove this restriction, which is in fact unnecessary, one is
led to a process which is essentially equivalent to linear programming. The
relationship between exchange processes and linear programming has been.
elucidated by Powell [Handscomb (1966), Chapter 8].

3. COMPUTATIONAL METHODS FOR THE VARIABLE-JOINT CASE

The previous section gives a subroutine for calculating

A*(u)=min max If(x)-A(x;a,u)i.
a a:::;;;;x~{3

We now want to calculate

A** = min A*(U)
u

(11)

and the associated joints u*.
The most obvious procedure is to search in the (m - I)-dimensional space

for a minimum ofthe function A*(U). The great efficiency ofthe linear program
ming subroutine for calculating A*(U) indeed renders such approaches feasible
for modest values of m, and successful computations have been reported
[Esch and Eastman (1967)]. As might be anticipated, the usual poor perform
ance of steepest descent is observed, and other search processes, such as the
Fletcher-Powell variable metric descent process (1963), are much more
effective. However, the increase in dimensionality of the space in which one
must search as the number of joints is increased and the severe problems of
numerical differentiation which arise are serious limitations. Furthermore,
it appears that A*(U) is usually insensitive to small changes in Unear the optimal
u*-that is, small variations in Uabout u* produce only slight changes in A*(U).
It is desirable therefore to develop an optimization method that is more
efficient by virtue of taking advantage of specific characterization properties
of the problem.

Let it be required then to optimize both a and Uin the approximating function
(2); the total number of free parameters is

no. of parameters = n + 2m - 1 (12)

and we hope for a best approximation which equioscillates (i.e., attains
maximum error magnitude with alternating sign) on a full set of n + 2m
critical points; such an approximation can be identified aposteriori as a solution
by Schumaker's characterization results [(1967), Theorem 4.2]. For purposes of
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constructing an iterative scheme, we relax the continuity requirement to
Cn- 2 ; that is, we work with approximating functions of the form

rn-I rn-I

A(x) = i~O dix
i + '6 :~(x - uk)+n + '6 (n ~\)!(x - ud::- I (13)

where Fkgives the discontinuity of A(n-1)(x) at the kthjoint.
We note that, when the joints Uk are regarded as given, this A(x) contains

n + 2m - I free parameters (the same number as in Eq. (12)), and consequently,
a best approximation with n + 2m error extrema can be anticipated for any
joint locations. Such an approximation A(x) is, of course, not the desired
solution because of the discontinuities in its (n - I)st derivative. The basic idea
of this approach, however, is to devise an algorithm for adjusting the joint
locations in a manner that tends to reduce the discontinuities in A(n-1)(x). Ifan
iterative process can be devised which generates a sequence of best Cn- 2

approximations in which these discontinuities approach zero, then the limit
will be the desired solution, since it will be Cn

-
I and it will possess the full

complement ofn + 2m error extrema.
With given joints u, let the parameters of this A(x) be chosen, for example

by the linear programming method of Section 2 above, so that A(x) is a best
Cn- 2 approximation to I(x); we may denote the resulting values of the para
meters by putting tildes over them. Thereby are defined (m - 1) functions
Fk(uI, ... , Urn-I), k = 1, ... , m - I, of the (m - I) quantities UI, _.., Urn- I- Our
endeavor is to solve the nonlinear system

F(u l , , Urn-I) = 0, k = 1, ... , m - 1. (14)

We employ various modifications of Newton's method; that is, given joint
locations u, we define new "improved" joint locations by the linearized
equations

k= 1, .. _, m- I,_ rn-I (OFk )
Fk + ~ SUj ~. =0,

J=I uUJ

introducing perhaps an under-relaxation parameter
iteration of the process to help ensure convergence:

(15)

IXp in the typical pth

(16)

One approach is to calculate the partial derivatives in (15) by numerical
differentiation:

(
OFk) ...:.. Fk(ul, . - -, Uz + .Juz, .. -, Urn-I) - Fk(ul, ..., Uz, ..., Urn_I) (17)
oUz I Lluz

Each of the two values of Fk in Eq. (17) is calculated by solving (by linear
programming) a C n- 2 best approximation problem with the indicated
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joints. Substitution of the resulting values into Eqs. (15) is tantamount
to replacing each surface Fk(Ul, U2,"" um- 1) by a secant plane coinciding with
the surface at the m points (UI, U2, ... , Um-I), (u l + .dUb U2, ... , Urn-I), .. "
(Uj, U2, ... , Um- I + .dUm-I); therefor~ the method has been called the secant
plane method, Care must be taken to avoid the familiar pitfalls of numerical
differentiation when small .du, are employed.

The labor of setting up the linear system (15) on each iteration is substantial,
requiring m fixed-joint best approximation calculations (and perhaps more, if
special steps are taken to safeguard against numerical differentiation troubles).
Therefore it is of interest to look for a less laborious iterative process. First,
we neglect the dependence ofFk on all the Uj except Uk; i.e., we neglect all save
the diagonal elements of(15). Secondly, we assume that most ofthe dependence
of Fk on Uk is explicit, so that the implicit dependence which results from the
fact that coefficients lij all change as Uk changes can be neglected. The result is
a simple approximate formula for oFk/oUk which requires only one fixed-joint
best approximation calculation. If the best approximation for joints U has the
representation

n

A(x;a,u) = 2; tk• iXi
i=O

(18)

in the typical kth interval between joints, then the above approximations yield

(O!k) = Ok ,n![tk+l n- tk n]' (19)
uU, 2' • •

The simplified Newton's method which results from substitution of (19)
into (15) has been found quite successful in practice. Indeed the success of this
(and also of the previously described secant plane method) has been such that
trial of more sophisticated recently developed methods for nonlinear systems
has not seemed necessary. The ultimate convergence of both methods is
quadratic. Unlike the search for otpimal .\*(u), the search for the zeros of the
Fk(u) in the (m - I)-dimensional joint space appears to be well-conditioned;
small variations in u about u* tend to result in large changes in the Fk(u).

4. SAMPLE RESULTS AND COMPUTATIONAL EXPERIENCE

Optimal joint best spline approximations have been computed for many
test cases using the two methods described above. Sample results are given in
Tables I and II for thefunctionsj(x) = eX on [0, 1], and vxon [0, 1]. The former
was chosen as an example of a well-behaved analytic function, and the latter
as an example of a function exhibiting rather difficult properties (note the
vertical tangent at x = 0). As might be anticipated, in the "well-behaved" case
j(x) = ex increasing the degree n is more advantageous than adding joints,



TABLE I

OPTIMAL-JOINT SPLINE ApPROXIMATIONS TO f(x) = eX ON [0,1]"

m = Number ofSub-Intervals

~

o
.9
~
'0

k
II
I::

1 2 3 4 5 6 7 8

0 .859141 .429570 .214785 .107393

1 .105933

2 .ooS756 .001342 .000427 .00018701 oo9789סס. oo5750סס. oo3659סס. oo2472סס.

.5429 .3809 .2934 .2386 .2011 .1737, .3263 .1530, .2882
.6951 .5418 .•4440 .3762, .5416 .4715, .6100 .4175, .5416

.7713 .6363, .8170 .6984, .8475 .7424, .8692 .6607, .7752
.8856

3 .00054478 oo6396סס. oo1597סס. oo572סס0. oo253סס0. oo128סס0.

.5322 .3833 .2996 .2458 .2085
.6748 .5315 .4385 .3733, .5314

.7507 .6222, .7979 .6836, .830~

4 oo2716סס. oo255סס0. .o00ooo52 .o00ooo16
.5258 .388 .308

.660 .527
.736

5 oo113סס0. 0ooooo9ס. 0ooooo2ס.

.523 .41
.67

6 .00000OO4

F;J
Q
:>
~
~en

~

" The first entry in each box is .\, the minimax error magnitude. Subsequent entries give the optimal joint locations.
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TABLE II

OPTIMAL-JOINT SPLINE ApPROXIMATIONS TO f(x) = Vx ON [0,1]"

m = Number of Sub-Intervals

93

1 2 3 4

0 ooסס50. OOסס25. .166667 .125000
.2500 .1111 .0625

.4444 .2500
.5625

1 .125000 .041667
.1111

2 .067619 .019158 .008226 .004341
.0590 .01088 .00305

.1523 .04144
.2381

3 .045928 .012227 .004931
.0395 .00645

.1076
I
I

4 .034686 .008943
.0295

5 .027842 .0070
.023

6 .023242

7 .019946

8 .017465

" The first entry in each box is A, the minimax error magnitude. Subsequent entries give the
optimal joint locations.
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whereas in the "difficult" case Vx on [0,1] improvement is very slow as n
increases, and adding joints, i.e., increasing the number of subintervals m, is
more effective in reducing the minimax error magnitude A.

The initial assumption on which these methods are based, that the best C n
-

1

spline approximation with optimal joint locations has an error which equi
oscillates on a full complement ofn + 2m critical points, was observed to hold
in all examples considered (which included, in addition to those shown
in Tables I and II, optimal joint calculations for various nand m for
f(x) = erf(5x), 1 - e- 15X, various nonanalytic functions, (1 + [kX]2)-1 for
various values ofk, etc., all on [0,1]). It even appears that allowing the joints
to assume their optimum locations not only adds m -1 criticalpoints,but tends
to suppress the "non-normal" cases that appear in the fixed-joint theory, the
joints being free to move where they are most needed.

Type

Polynomial

Spline

Piecewise

(Spline)
(Polynomial)

TABLE III

ApPROXIMATIONS TO eX ON [0,1]; MESH: .01

Joint Continuity Degrees of Minimax
Degree locations class freedom deviation

2 ez 3 .008756
3 C3 4 .000544
4 C4 5 oo27סס.

5 CS 6 oo1סס0.

2 .5429 Cl 4 .001342
3 .5 C2 5 .000082
3 .5322 ez 5 .000064
4 .5258 C3 6 .000002
3 .38, .67 C2 6 oo16סס.

3 .30, .53, .75 C2 7 oo6סס0.

3 .5 C-l 8 .000041
3 .5 Co 7 .000043
3 .5 Cl 6 .000067
3 .5 ez 5 oo82סס.

3 C3 4 .000544

The methods used are perfectly applicable to cases where higher order
discontinuities are allowed. Only in exceptional cases are these optimal (as
in quadratic spline approximation of I(x) = Ixl in [-1,1]). Ordinarily the
situation is similar to that shown in Table III, where the last section shows the
relatively small additional improvement that results in allowing a higher order
discontinuity in a piecewise cubic approximation to eX. (In Tables III and IV,
C-1 indicates the absence of any continuity requirement at the joints.) The
optimal joint locations for spline approximations to eX are relatively evenly
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distributed over [0, I], and a heavy penalty results from bringingjoints together
to form higher-order discontinuities. Table IV shows a case where this effect
is less marked than usual.

TABLE IV

ApPROXIMATIONS TO erf(5x) ON [0,1]; MESH: .002

Joint Continuity Degrees of Minimax
Type Degree locations class freedom deviation

Polynomial 2 0 3 .15785
3 C3 4 .05279
4 C4 5 .01512
5 CS 6 .01418
6 C6 7 .00762
7 C7 8 .00223

Spline 2 .309 Cl 4 .00834
3 .516 C2 5 .01187
4 .1 C3 6 .01182
3 .293, .58 0 6 .00575

Piecewise 3 .29 C-l 8 .00470
3 .29 CO 7 .00561
3 .29 Cl 6 .00572

(Spline) 3 .516 0 5 .01187
(Polynomial) 3 C3 4 .05279

A computational difficulty associated with the discretization occurs in the
case of first-degree splines. The process will often terminate with a spurious
result in which the error maximum is achieved at the mesh points on either side
of a joint. This trouble can be prevented by a program modification which at
each step inserts the current joint locations into the discrete point set
y = {gI' gz, ... gN}' (In general, it is wise to include in the set Y any point at
which the error curve can have a cusp.)

The authors do not mean to imply that one should go to the trouble of
optimizing joint locations in all applications. Frequently it is quite satisfactory
to meet accuracy requirements by using a few additional fixed joints at locations
chosen in accordance with some a priori rule. Attention might also be given
to the possibility of experimentally adjusting joint locations by the use of a
scope display and light pen.
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